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1. INTRODUCTION

The aim of the present paper is to demonstrate a method that permits one to obtain generalized
solutions for some quasilinear equations and systems of hyperbolic type. This method is a variational
principle similar to the well-known Lax–Oleinik principle for the case of one equation [1, 2] and its
extension to some nonstrictly hyperbolic systems [3]. However, the novelty of our approach is that
the corresponding variational principle is constructed by methods completely different from those
known earlier. Namely, we use the theory of equilibrium of a potential in an external field. This
permits us to construct a variational representation of generalized solutions of a strictly hyperbolic
system in nondivergence form.

We construct a variational representation for the quasilinear equation

(ln B)t + Bx = 0, (1.1)

where B = B(t, x), (t, x) ∈ Rt × R, and B(0, x) = B0(x) > 0 is a smooth monotone bounded
function, as well as for the system of equations















αt +
β − α

4
αx = 0,

ln(β − α)t −
(

α + β

4

)

x

= 0,
(1.2)

where α = α(t, x) and β = β(t, x), (t, x) ∈ R
+
t × R

+
x , with the initial conditions α(0, x) = α0(x)

and β(0, x) = β0(x) and the boundary conditions α(t, 0) = β(t, 0).

Note that, in the smooth case, Eq. (1.1) is equivalent to the inviscid Burgers equation (Hopf
equation)

Bt + BBx = 0, (1.3)

and system (1.2) is equivalent to the system














αt +
β − α

4
αx = 0,

βt −
β − α

4
βx = 0.

(1.4)
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ON THE VARIATIONAL REPRESENTATION OF SOLUTIONS 5

System (1.4) is strictly hyperbolic for α 6= β, and hence its solutions admit discontinuities. Sys-
tem (1.4) is known as the continuum limit of the Toda lattice. Its “dispersive” regularization was
studied by Deift and McLaughlin [5] (see also [6]). We are interested in discontinuous solutions of
system (1.2) itself rather than its regularizations.

In the following, we show that the functions constructed according to our variational princi-
ple satisfy Eq. (1.1) or (1.3) and system (1.2) or (1.4) in the smoothness domain; if there is a
discontinuity line, then Hugoniot relations associated with Eq. (1.1) or system (1.2) are valid.

System (1.2) is nondivergent, and hence we recall how one treats the Hugoniot relations in this
case (see [4]).

Definition 1.1. Consider the system of equations

ut + A(u)ux = 0, (1.5)

where (t, x) ∈ Rt × R, u = (u1, u2), and A(u) is a 2 × 2 matrix. Suppose that a solution of this
system can be locally represented in the form

u(t, x) = u0 + H(x − V t)(u1 − u0), (1.6)

where H(θ) is the Heaviside function and V is the local direction of the discontinuity line. Then
the Hugoniot relation associated with system (1.5) for the solution (1.6) is defined as the relation

−V (u1 − u0) +

∫ 1

0

A
(

Φ(s;u0, u1)
)∂Φ

∂s
(s;u0, u1) ds = 0, (1.7)

where Φ(s;u0, u1) is some path joining u0 and u1 (Φ(0;u0, u1) = u0 and Φ(1;u0, u1) = u1).

Remark 1.1. Relation (1.7) substantially depends on the choice of Φ unless A(u) is the total
differential of some vector function F (u), DF (u) = A(u). In this case, system (1.5) is in divergence
form, and relation (1.7) is independent on the choice of the path. For systems in nondivergence
form, this ambiguity is intrinsic, and the choice of a specific relation (1.7) should be determined by
a physical problem. This will be shown for system (1.2).

2. EQUILIBRIUM OF A FAMILY OF MEASURES OF VARIABLE
MASS x IN AN EXTERNAL FIELD DEPENDING ON TIME t

To obtain a representation of solutions of problems (1.1)–(1.2), consider the following problem
on the equilibrium of a potential in an external field. We define the potential corresponding to the
logarithmic kernel, of a measure µ on R by the formula

Vµ(λ) =

∫

ln
1

|λ − z| dµ(z). (2.1)

We normalize the measure to a parameter x:
∫

dµ(λ) = x.

Let Q(λ) be a continuous function Q : R → R ∪ {+∞} depending on the parameter t,

Q(t, λ) = Q1(t, λ) + Q0(λ), Q1(0, λ) = 0. (2.2)

This function will be called the external field. To ensure that the support Sx of the equilibrium
measure µx defined below is compact, we additionally require that

lim
|λ|→+∞

Q(λ)

ln |λ| = +∞.

Consider the variational problem

Wµ :=
1

2

∫

Vµ(λ) dµ(x, λ) +

∫

Q(t, λ) dµ(x, λ) → min
µ

→ Wµ
x

. (2.3)

Physically, problem (2.3) means that we seek a charge distribution µx(λ, t) on the line so as to
minimize the total energy of the charge in the external field (2.2). It is known [7–9] that there
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6 A. I. APTEKAREV, YU. G. RYKOV

exists a unique minimizing measure µx, which is characterized by the equilibrium relation

Vµ
x

(λ) + Q(t, λ)

{

= γQ on suppµ =: Sx,

> γQ on R;
(2.4)

here the constant γQ is called the equilibrium constant.

The family {Sx}x>0 of supports of the equilibrium measures µx is an important characteristic
of the problem. It is a monotone family of compact sets (see [9]); i.e.,

Sx′ ⊆ Sx, x′
6 x.

If the family {Sx}x>0 is known, then one can reconstruct the input data of the problem, i.e., the
external field Q, by the formula

Q(λ) =

∫ ∞

0

gSx
(λ) dx, (2.5)

where gK(λ) is the Green function of a compact set K. To find Sx, it is useful to consider the
functional FQ(K) introduced in [10] on regular compact sets K ⊂ R. Let ωK be the Robin measure
of a compact set K (i.e., ωK is the equilibrium measure in problem (2.3)–(2.4) for Q(λ) = 0 and
suppµ ⊂ K), and let cap(K) be the logarithmic capacity of K (i.e., cap(K) = exp(−γ0) in (2.4)
for Q(λ) = 0 and suppµ ⊂ K). By definition,

FQ(K) := −x log cap(K) +

∫

Q(λ) dωK(λ). (2.6)

It turns out (see [10, 8, 9]) that the support of the equilibrium measure Sx minimizes this functional;
more precisely,

FQ(K) > FQ(Sx) = γQ (2.7)

for each compact set K. By (∆) we denote the class of external fields Q(λ) such that the supports
of the equilibrium measures Sx are intervals,

Q ∈ (∆) ⇔ Sx = ∆x := [α(x), β(x)] ∀ x > 0. (2.8)

It is these initial data (Q0 in (2.2)) in this class that are of interest to us in this paper. For example,
it is known (see [8]) that each convex field Q belongs to (∆); however, we are mainly interested in
nonconvex Q0 in (∆).

3. THE INVISCID BURGERS EQUATION (HOPF EQUATION)

To obtain representations of solutions of problem (1.1), consider problem (2.3), (2.4) on the
equilibrium of the potential in the external field Q(t, λ). In this section, we consider fields Q even
with respect to λ; hence we write suppµ = [−b(t, x), b(t, x)]. Under the assumption that Q ∈ (∆),
the functional (2.6) has the form

−x ln
b

2
+

1

π

∫ b

−b

Q(t, λ)√
b2 − λ2

dλ → min
b

for fixed t and x. (3.1)

We take
Q(t, λ) = λ2t + Q0(λ). (3.2)

Then problem (3.1) becomes

−x ln
b

2
+

b2

2
t +

1

π

∫ b

−b

Q0(λ)√
b2 − λ2

dλ → min
b

for fixed t and x. (3.3)

It is known [9] that the field Q(λ) and the family {[−b(x), b(x)]}x>0 of supports of the equilibrium
measures are related by the formula

Q(λ) =

∫ ∞

0

ln

∣

∣

∣

∣

∣

λ +
√

λ2 − b2(x)

b(x)

∣

∣

∣

∣

∣

dx.
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ON THE VARIATIONAL REPRESENTATION OF SOLUTIONS 7

Theorem 3.1. If the minimum in problem (3.3) is unique, then the function B(t, x) = b2(t, x)
is a smooth solution of problem (1.1); the points (t, x) for which there are two minima locally form
a curve along which a Hugoniot condition associated with (1.1) in the sense of Definition 1.1 holds.

Proof. Since the minimum in (3.3) is attained at some point, it follows that the derivative with
respect to b at that point is zero,

−x

b
+ bt +

d

db

(

1

π

∫ b

−b

Q0(λ)√
b2 − λ2

dλ

)

= 0. (3.4)

However, it is known that, for t = 0, the minimization problem for the energy of the charge in the
external field results in an initial measure with support [−b0(x), b0(x)], b2

0(x) = B0(x); i.e.,

d

db

(

1

π

∫ b

−b

Q0(λ)√
b2 − λ2

dλ

)

=
b−1
0 (b)

b
,

whence it follows that
1

π

∫ b

−b

Q0(λ)√
b2 − λ2

dλ =

∫ b

0

b−1
0 (s)

s
ds. (3.5)

Thus from (3.4), we obtain

−x

b
+ bt +

b−1
0 (b)

b
= 0,

or
x = b2t + b−1

0 (b). (3.6)

Since (3.6) is a characteristic relation for (1.1) for B = b2, we see that we have proved the first
assertion of Theorem 3.1.

If there are two points of global minimum, b1 and b2, in (3.3), then

−x ln
b1

2
+

b2
1

2
t +

1

π

∫ b1

−b1

Q0(λ)
√

b2
1 − λ2

dλ = −x ln
b2

2
+

b2
2

2
t +

1

π

∫ b2

−b2

Q0(λ)
√

b2
2 − λ2

dλ. (3.7)

Relation (3.7) locally determines some curve x(t). We differentiate (3.7) with respect to t and take
into account (3.4) to obtain

−ẋ ln
b1

2
+

b2
1

2
= −ẋ ln

b2

2
+

b2
2

2
,

or
−2ẋ(ln b2 − ln b1) + b2

2 − b2
1 = 0,

i.e.,
−ẋ(ln b2

2 − ln b2
1) + b2

2 − b2
1 = 0. (3.8)

Relation (3.8) is obviously a Hugoniot relation for (1.1) in the sense of Definition 1.1. Thus we have
proved the second assertion of Theorem 3.1.

Remark 3.1. In view of (3.5), the variational problem for the support of the measure has the
form

−x ln
b

2
+

b2

2
t +

∫ b

0

b−1
0 (s)

s
ds → min

b
. (3.9)

Note also that the classical variational principle for the inviscid Burgers equation bt + bbx = 0 is
given by the extremum problem

(x − a)2

2t
+

∫ a

0

b0(s) ds → min
a

, b =
x − amin

t
= b0(amin), (3.10)

or, if we write
x − a

t
= b,

b2

2
t +

∫ b
−1

0
(b)

0

b0(s) ds → min
b

under the constraint x − bt − b−1
0 (b) = 0. (3.11)

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 13 No. 1 2006



8 A. I. APTEKAREV, YU. G. RYKOV

The solution of the conditional extremum problem (3.11) results in an analog of (3.9) for the
inviscid Burgers equation. This is the relationship between our variational principles and traditional
statements.

4. A HYPERBOLIC SYSTEM IN NONDIVERGENCE FORM

To obtain representations of solutions of problem (1.2), consider the problem on the equilibrium
of the potential in the external field, similar to the problem considered in Section 3. Note that here
the field is not necessarily an even function. Then the functional (2.6) has the form

−x ln
β − α

4
+

1

π

∫ β

α

Q(t, λ)
√

(λ − α)(β − λ)
dλ → min

α,β
(4.1)

for fixed t and x; here suppµ = [α, β].

We take Q(t, λ) = −λt/2 + Q0(λ); then problem (4.1) becomes

−x ln
β − α

4
− t

α + β

4
+

1

π

∫ β

α

Q0(λ)
√

(λ − α)(β − λ)
dλ → min

α,β
(4.2)

for fixed t and x. Here the function Q0 of the class (∆) (see (2.8)) is related to the initial data
by (2.5),

Q0(λ) =

∫ ∞

0

g∆x
(λ) dx, where g∆x

(λ) = ln

∣

∣

∣

∣

∣

λ − a0(x) +
√

(λ − a0(x))2 − 4b0(x)2

2b0(x)

∣

∣

∣

∣

∣

; (4.3)

here

a0(x) :=
α0 + β0

2
(x), b0(x) :=

β0 − α0

4
(x).

Theorem 4.1. If the minimum in problem (4.2) is unique, then the functions α(t, x) and β(t, x)
are a smooth solution of system (1.2). The points t, x for which there are two such minima locally
form a curve along which Hugoniot relations for (1.2) in the sense of Definition 1.1 hold.

Proof. In the smooth case, system (1.2) is equivalent to system (1.4). By applying the hodo-
graph transformation to (1.4), i.e., by introducing functions t(α, β) and x(α, β) such that







α ≡ α
(

t(α, β), x(α, β)
)

,

β ≡ β
(

t(α, β), x(α, β)
)

,
(4.4)

we obtain the system














∂x

∂α
+

β − α

4

∂t

∂α
= 0,

∂x

∂β
− β − α

4

∂t

∂β
= 0 .

(4.5)

We write B(α, β) ≡ 1

π

∫ β

α

Q0(λ)
√

(λ − α)(β − λ)
dλ and equate the partial derivatives of (4.2) with

zero. Then we obtain the following relations for the functions t(α, β) and x(α, β):















x − β − α

4
t = −(β − α)

∂

∂α
B(α, β),

x +
β − α

4
t = (β − α)

∂

∂β
B(α, β) .

(4.6)
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Note that the function B(α, β) admits the representations






















(β − α)B(α, β) =
2

π

∫ β

α

Q0(λ)(β − λ)
d

dλ

√

λ − α

β − λ
dλ,

(β − α)B(α, β) = − 2

π

∫ β

α

Q0(λ)(λ − α)
d

dλ

√

β − λ

λ − α
dλ .

(4.7)

Integrating by parts, we obtain






















(β − α)B(α, β) = − 2

π

∫ β

α

[Q′
0(λ)(β − λ) − Q0(λ)]

√

λ − α

β − λ
dλ,

(β − α)B(α, β) =
2

π

∫ β

α

[Q′
0(λ)(λ − α) + Q0(λ)]

√

β − λ

λ − α
dλ .

By differentiating the first relation with respect to α and the second with respect to β, we obtain


















−B(α, β) + (β − α)
∂B(α, β)

∂α
= − 2

π

∫ β

α

Q′
0(λ)(β − λ) − Q0(λ)

−2
√

(λ − α)(β − λ)
dλ,

B(α, β) + (β − α)
∂B(α, β)

∂β
=

2

π

∫ β

α

Q′
0(λ)(λ − α) + Q0(λ)

2
√

(λ − α)(β − λ)
dλ ,

or






















(β − α)
∂B(α, β)

∂α
=

1

π

∫ β

α

Q′
0(λ)

√

β − λ

λ − α
dλ,

(β − α)
∂B(α, β)

∂β
=

1

π

∫ β

α

Q′
0(λ)

√

λ − α

β − λ
dλ .

(4.8)

By substituting (4.8) into (4.6), we obtain






















x − β − α

4
t = − 1

π

∫ β

α

Q′
0(λ)

√

β − λ

λ − α
dλ,

x +
β − α

4
t =

1

π

∫ β

α

Q′
0(λ)

√

λ − α

β − λ
dλ .

(4.9)

By differentiating the first equation in (4.9) with respect to β and the second with respect to α,
we find that



















∂x

∂β
− β − α

4

∂t

∂β
− t

4
= − 1

π

∫ β

α

Q′
0(λ) dλ

2
√

(λ − α)(β − λ)
,

∂x

∂α
+

β − α

4

∂t

∂α
− t

4
= − 1

π

∫ β

α

Q′
0(λ) dλ

2
√

(λ − α)(β − λ)
.

(4.10)

We find t from (4.6):
t

2
=

∂B(α, β)

∂α
+

∂B(α, β)

∂β
.

Using (4.8), we further obtain

t

2
=

1

β − α
· 1

π

∫ β

α

Q′
0(λ)

(

√

β − λ

λ − α
+

√

λ − α

β − λ

)

dλ =
1

π

∫ β

α

Q′
0(λ) dλ

√

(λ − α)(β − λ)
.

By substituting this expression into (4.10), we readily arrive at (4.5). This proves the first assertion
of Theorem 4.1.
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If there are two points of global minimum (α1, β1) and (α2, β2) in (4.2), then

−x ln
β1 − α1

4
− t

α1 + β1

4
+ B(α1, β1) = −x ln

β2 − α2

4
− t

α2 + β2

4
+ B(α2, β2) . (4.11)

Relation (4.11) locally determines some curve x(t). We differentiate (4.11) with respect to t and
take into account (4.6), thus obtaining

−ẋ

[

ln
β2 − α2

4
− ln

β1 − α1

4

]

−
[

α2 + β2

4
− α1 + β1

4

]

= 0 ,

or

−ẋ
[

ln(β2 − α2) − ln(β1 − α1)
]

−
[

α2 + β2

4
− α1 + β1

4

]

= 0 . (4.12)

Now let us write out Definition 1.1 for system (1.2) in detail. To this end, we introduce the
notation ln(β − α) ≡ C; then (1.2) becomes the system















αt +
eC

4
αx = 0,

Ct −
eC

4
Cx − αx

2
= 0 .

(4.13)

Following Definition 1.1, we obtain a relation on the discontinuity for system (4.13) and hence
for (1.2):

−ẋ

[(

α2
C2

)

−
(

α1
C1

)]

+

∫ 1

0

(

eΦ2/4 0
−1/2 −eΦ2/4

)

(

∂Φ1/∂s

∂Φ2/∂s

)

ds = 0 ,

where

(

Φ1(s)
Φ2(s)

)

is the path in Definition 1.1 joining (α1, C1) with (α2, C2).

Next,














−ẋ(α2 − α1) +

∫ 1

0

1

4
eΦ2Φ1s ds = 0,

−ẋ(C2 − C1) +

∫ 1

0

(

−1

2
Φ1s −

1

4
eΦ2Φ2s

)

ds = 0

and














−ẋ(α2 − α1) +

∫ 1

0

1

4
eΦ2Φ1s ds = 0,

−ẋ(C2 − C1) −
1

2
(α2 − α1) −

1

4

(

eC2 − eC1

)

= 0 .

From this, recalling the definition of C ≡ ln(β − α), we obtain















−ẋ(α2 − α1) +

∫ 1

0

1

4
eΦ2Φ1s ds = 0,

−ẋ
[

ln(β2 − α2) − ln(β1 − α1)
]

− 1

2
(α2 − α1) −

1

4

[

(β2 − α2) − (β1 − α1)
]

= 0 .

(4.14)
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It is easily seen that the second equation in (4.14) coincides with (4.12) and the path (Φ1,Φ2) can
always be chosen in such a way that the first equation in (4.14) will be satisfied as well. Thus we
have proved the second assertion of Theorem 4.1.

Thus, starting from a representation based on a meaningful physical approach, we have selected
“admissible” Hugoniot relations from the set of all Hugoniot relations possible in accordance with
Definition 1.1 for a quasilinear hyperbolic system in nondivergence form. The presence of a varia-
tional representation can be viewed as an alternative form of the condition of entropy growth on a
shock wave.

Fig. 1. Extrema of the functional (3.1) at various times t.

5. EXAMPLES

Figure 1 shows the graphs of the extrema b(x) of the functional (3.1) at various times t. The
vertical line (shock wave) joins the global minima. The initial conditions for Eq. (1.1) correspond
to the initial external field

Q0(λ) := 3λ6 − 2λ4 + λ2.

Figure 2 shows the solutions of system (1.2) at various times t; these solutions are computed as
the global minima of the functional (4.2) under the initial conditions (4.3) corresponding to the
initial external field

Q0(λ) := λ4 − λ2

2
+ 4λ.

Note that there is a shock wave that arises and propagates for t > 6.

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 13 No. 1 2006



12 A. I. APTEKAREV, YU. G. RYKOV

Fig. 2. The onset of a shock wave as a result of the solution of the variational problem.
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